

Combining soil and environmental information to predict growth response to Nitrogen fertilizer in adult stands of radiate pine in Chile.

C.Montes, H.Ojeda, B.Barría, P.Burgos and H.L. Allen

Aims for this research

- Can we increase productivity fertilizing with N and P in Chile?
- How long does the response last?
- Develop tools to asses responsive sites
- Determine value treshold for fertilizer under uncertain climatic scenarios.

The state of California goes from 32° to 42° N so does the study area but South

Concepción

32°

Isla Mocha

© 2006 Europa Technologies Image © 2006 TerraMetrics Image © 2006 NASA

Costal Range

Central Valley

N availability
driven by C:N ratios,
Temperatura, Soil Moisture

Trials were established in different parent materials

The Trial

- Too9 = Boron Only (8Kg/ha)
- Tooo = Nothing
- T100 = 150 N, 0 P, 8 B
- T200 = 300 N, 0 P, 8 B
- T110 = 150 N, 20P, 8B
- T120 = 150 N, 40P, 8B
- T210 = 300 N, 20P, 8B
- T220 = 300 N, 40P, 8B

Design/Measurements

- 250 m² plots (50*50)
- 900m² measurement plots
- 4 replicates
- DBH, Height, D_{H=5.2}
- LAI (hemyview)
- Foliage and litterfall
- Lab incubation for NH₄⁺
- Soil samples for fertility

All sites had an adequate foliar nitrogen concentration, one site had a relatively low P concentration

Expected response

Growth over control Plot (m³/ha)

Years since treatment

N + P provided a better response, depending on the type of soil we where.

Can we predict response size in different sites?

For each degree increase We get 25% decrease in C:N ratio.

Above 5% C:N ratio doesn't increase suggesting a Nitrogen dynamics limited by other factors. (e.g. Temperature?)

Rainfalk water trees might not see Temperature: Heat trees might not need

Mean

Temperature

-3.7 - 5.5

5.5 - 7.6

7.6 - 9.4

9.4 - 11.1

11.1 - 12.7 12.7 - 15.5

(°C)

Yearly Rainfall (mm)

Water (mm)

In Chile, growth is driven by water availability

Water holding capacity

Many soils have large water storage capacity

Water Holding Capacity (mm)

26 - 100

100 - 170

170 - 250

250 - 320

320 - 818

Water deficit index maps, combines water deficit with storage to produce a single index.

Good agreement between WDI and yield in Chile

Response vs Water Deficit Index in time

Up to 7 years, DBH relative gain is still incrasing

Farms are selected Using WDI as criteria Inventory plots at 7 years projected at 13 years

* black contours correspon to confidence intervals for the mean

Summary

- Water deficit index combines plant demand for water with environment supply capability.
- Sites with high leaf area might not be very responsive
- Organic mater content, C:N ratio predicted by Water Deficit Index.
- Nitrogen relative reponse explained by water deficit and years since treatment.
- A model was able to predict responsive sites and is used operationaly.

Thanks, questions?

