FOREST PRODUCTIVITY COOPERATIVE

North Carolina State University · Virginia Polytechnic Institute and State University · Universidad de Concepción

Fertilization of Pine Plantations in the Southern United States

Thomas Fox, Rafael Rubilar, Jose Stape Tim Albaugh, Colleen Carlson, and Lee Allen

www.forestproductivitycoop.org

NC STATE UNIVERSITY

Cooperative 2012

FOREST PRODUCTIVITY COOPERATIVE

North Carolina State University · Virginia Polytechnic Institute and State University · Universidad de Concepción

Forest Productivity Cooperative

A partnership among North Carolina State University, Virginia Polytechnic Institute and State University, the Universidad de Concepción, Instituto de Pesquisas e Estudos Florestais (**IPEF**) and forest industry and landowners in the US and Latin America

NC STATE UNIVERSITY

FOREST PRODUCTIVITY COOPERATIVE

North Carolina State University · Virginia Polytechnic Institute and State University · Universidad de Concepción

Our Goal is to Help our Members Increase the Productivity, Profitability and Sustainability of Plantation Silviculture in the Americas

Cooperative Research and Technology Transfer Program (Translational Research)

41 Full Members

Agropical **American Forest Management** Arauco – Bioforest Boise **Buckeye** Campbell Group Claritas Copener Cotopaxi Deforsa **Dougherty & Dougherty Forestry** F&W **FCB** Fibria FOMEX Forest Investments Associates **Forestal Rio Biabo** Forestal Mininco/ - Bosque del Plata - CMPC **Greenwood Resources** Hancock Forest Management IFOM **International Paper** Jordan Lumber Klabin Lykes Bros Masisa MWV **Milliken Forestry Molpus Timberlands Management** Plum Creek Timber Ravonier Refocosta **Resource Management Service RMK** Timberlands Smurfit Cartón de Colombia y Venezuela **Superior Pine** Suzano Timberland Investment Resources Valor Florestal Westervelt Weverhaeuser

Forest Productivity Cooperative 62 Members October 2012

5 Sustaining

Agrium Aprilasia CONIF North Carolina Division of Forest Resources Virginia Department of Forestry

16 Corresponding

AgXplore ArborGen **Carolina Soil** COMPO DuPont Florida Grown Forestry & Land Resource Gavilon **Green Technologies** IFCO International Plant Nutrition Institute Koch Agronomic Services Mosaic Payne's Flying Syngenta Thrash Aviation

Eucalyptus Brazil

Copyright Forest Proc Cooperative 201

FOREST PRODUCTIVITY COOPERATIVE

North Carolina State University - Virginia Polytechnic Institute and State University - Universidad de Concepc

Pinus Tecnumanii – Colombia

Southern Pine Forests in the US

•24 million ha of pine forests with 14 million ha of pine plantations
•Produce about 16% of global industrial wood
•Forestry is in top 3 industries in all 12 southern states –
•More than \$200 billion in direct revenue annually

Natural Range of Pinus taeda L.

Cooperative 2012

Contribution of Forest Management Practices to Productivity Improvements in Loblolly Pine in the Southeastern United States

Impacts of Intensive Management on Growth of Loblolly Pine in Southeast Georgia

Fertilization & Competition Control Age 13 = 302 m³/ ha

Fertilization of Southern Pine

Silviculture - Site Resources - Leaf Area

Copyright Cooperative 2012

Five-Year-Old Loblolly Pine in Virginia

Fertilized with N & P

Copyright Forest Productivity Cooperative 2012

Control

Liebig's Law of the Minimum Resource Deficiencies

Multiple Deficiencies Often Limit Tree Growth (N and P are Deficient on Most Soils in the South)

Model for Soil Nutrient Supply and Tree Nutrient Demand

Genetics Determines the Potential Nutrient Demand of the Tree

Poor Genotype

Good Genotype

But Resource Availability Will Still Limit Growth of Even the Best Genotypes Copyright Forest Productivity Cooperative 2012

CRIFF Soil Groups

Geology (Parent Material) Impacts Soil Nutrient Supply

Cooperative 2012

Establishment P Fertilization

Growth Response to P Fertilization on CRIFF A Group Soils

Age 20 Loblolly Pine Plantations in Coastal Georgia

0 kg/ha P at Planting Poorly Drained Clay Soil 50 kg/ha P at Planting Poorly Drained Clay Soil

CRIFF Soil Groups

Soil Nutrient Dynamics in Coastal Plain CRIFF A - Clayey, Poorly Drained Ultisols

P Deficient Terraces of the Atlantic Coastal Plain (ACP) and Gulf Coastal Plain (GPC) of the South

Province	Geologic Series	Terrace	Deficiency
ACP	Pleistocene	Silver Bluff	Severe P
		Princess Anne	Severe P
		Pamilico	Severe P
GCP	Pleistocene	Montgomery	Severe P
		Bentley	Severe P

Louisiana Potential P Deficiencies

Cooperative 2012

Regionwide 14

Treatments Control P NP NPK

Growth Response of Loblolly Pine at Age 5 Following NP Fertilization at Planting in Alabama on Citronelle Terrace

Check

Copyright Forest Productivity Cooperative 2012

Fertilized

P DEFICIENT SITES – Citronelle Terrace

Loblolly Pine at Age 20 Following NP Fertilization at Planting On Citronelle Terrace in Alabama

Check

Copyright Forest Productivity Cooperative 2012

Fertilized

CRIFF Soil Groups

Cooperative 2012

Soil Nutrient Dynamics on Citronelle Terrace CRIFF E, F Soils (Citronelle Terrace)

Nutrient Deficiencies on Terraces of the Alabama and Mississippi Coastal Plain

Province	Geologic Series	Terrace	Deficiency
LGCP	Pleistocene	Montgomery	Severe P
		Bentley	Severe P
UGCP	Pleistocene/Pliocene	Citronnelle	Severe P

Alabama Geology

Alabama Potential P Deficiencies

Copyrigh Cooperative 2012
Midrotation Fertilization

Nitrogen Deficiency

Regionwide 13 Midrotation Fertilization Study

<u>Treatments</u> Factorial N + P N @ 0,100,200,300 kg/ha P @ 0, 25, 50 kg/ha

Growth Response of Loblolly Pine to Midrotation Fertilization

RW130802 2-Year Response

Check

Copyright Forest Productivity Cooperative 2012

200N + 25 P

CRIFF Soil Groups

Cooperative 2012

Soil Nutrient Dynamics Coastal Plain and Piedmont Ultisols - CRIFF B, E, F

Frequency Distribution of Four-Year Response 200N+25P in Established Loblolly Pine Stands

LOW LAI Copyright Forest Productivity Cooperative 2012

[′] High LAI

LAI effects on Growth Response to Fertilizer

SR = ((Treatment Growth - Stand Average Growth) / std dev) x (cv + 100)

Juvenile Stand Fertilization

Model for Soil Nutrient Supply and Tree Nutrient Demand

Juvenile Stand Fertilization Regionwide 18 - Trial Locations

 \bigcirc 0 \bigcirc \bigcirc Copyright Forest Productivity

Cooperative 2012

Regionwide 18 Treatments

Treatment Code	Rate kg/ha	Frequency Years	Cumulative N at Years in Study			
			2	4	6	8
Control	0	None	0	0	0	0
206	60	2 yrs	60	120	180	240
212	120	2 yrs	120	240	360	480
218	180	2 yrs	180	360	540	720
412	120	4 yrs	120	120	240	240
418	180	4 yrs	180	180	360	360
424	240	4 yrs	240	240	480	480
624	240	6 yrs	240	240	240	480

Copyright Forest Productivity

Cooperative 2012

Growth Response of Juvenile Loblolly Pine to N + P Fertilization 2 Years After Treatment

Copyright Forest Productivity Cooperative 2012

Fertilized

RW18 average treatment response

Frequency effect at 8 years Cumulative dose 480 lbs ac⁻¹ elemental N

Frequency Distribution of Growth Response Following N+P Fertilization in Loblolly Pine

Regionwide 18

Eight-year volume growth responses

Volume growth response m³/ha

Regionwide 18 Eight-year volume growth responses

CRIFF Soil Groups

Cooperative 2012

Soil Nutrient Dynamics Coastal Plain and Piedmont Ultisols - CRIFF B, E, F

CRIFF Soil Groups

Cooperative 2012

11 Year Fertilizer Response at 184202 in Southeast Georgia

Control

Copyright Forest Fertilized (2 180 Treatment) Cooperative 2012

Soil Nutrient Dynamics in the Flatwoods CRIFF C,D,G

Potassium and Micronutrients

RW15 Study Locations

Cooperative 2012

Cumulative Volume Growth in RW15

Response to Potassium Fertilization and Elevation

Loblolly Pine Response to K and Micronutrient Fertilization

Pinus elliottii at age 10 years in north Florida, USA

Non Fertilized

N + P + K + Mico @ Age 3

CRIFF Soil Groups

Cooperative 2012

Soil Nutrient Dynamics in the Flatwoods CRIFF C,D,G

Nutrient Deficient Terraces of the Florida, Georgia and the Carolina's Coastal Plain

Province	Geologic Series	Terrace	Deficiency		
LACP	Pleistocene	Silver Bluff	Severe P		
		Princess Anne	Severe P		
		Pamilico	Severe P		
		Talbut	P, K, B		
		Penholoway	P, K, B		
		Wicomico	P, K, B		
UACP	Pliocene	Coharie	P, K, B		
Sandhills	Upper Cretaceous	Peedee	P, K, B		
		Black Creek	P, K, B		
		Middledorf	P, K, B		
Copyright Forest Productivity Cooperative 2012					

Location of K Deficiencipy or Refeator one Terraces in Georgia

Silviculture - Site Resources - Leaf Area

Copyright Cooperative 2012
Liebig's Law of the Minimum Nutrient Deficiencies

Multiple Deficiencies Often Limit Tree Growth (N and P are Deficient on Most Soils in the South)

Model for Soil Nutrient Supply and Tree Nutrient Demand

CRIFF Soil Groups

Soil Variability

Site Specific Silvicultural Fertilization Prescriptions Based on Soils, Geology and Stand Conditions

Soil Map as a GIS Layer

Technology for Precision Silviculture Prescriptions

Questions???

