Nutrient Limitations to Growth of Western Oregon Douglas-fir Forests: A Look Beyond Nitrogen

Doug Mainwaring Department of Forest Engineering, Resources, and Management Oregon State University

Doug Maguire Department of Forest Engineering, Resources, and Management Oregon State University

> Steve Perakis FRESC USGS

Background

- Nitrogen has been the nutrient of choice for intensive Douglas-fir management
 - Major research effort by RFNRP, SMC concluded that ~70% of westside DF stands will respond positively to nitrogen
 - Identification of stand or site characteristics indicative of response have been incomplete
 - Shotgun approach not satisfactory as fertilizer costs have increased
- Very little research has addressed response of Douglas-fir to nutrients other than nitrogen

Background

- Fertilization has been used in SNC-infected stands to try to counteract growth loss
 - Coastal soils generally have high soil N concentration and are low in base cations
 - Negative correlation between foliage retention and foliar N
 - Positive correlation between foliage retention and foliar Ca
- Very little research has addressed response of SNC-infected Douglas-fir to nutrients other than nitrogen

Beyond N Fertilization Trials

- Trials initiated in fall of 2006
- 16 locations, 10 landowners

Cascade Timber Giustina Land and Timber Hampton (2) Lone Rock Campbell Group (2) ODF OSU Port Blakely Starker Forests West Fork Timber Weyerhaeuser (2)

Target stands

Target stands

- 20 yrs of age (+/- 5 yrs)
- 750 tph (+/- 250 tph)
- No pct or fertilization in last 8 years
- < 20% salal cover</p>

Stand Attributes

	Tree attr	ibutes								Plot at	ttributes	
Plot	QMD (cm)	Ht. (m)	Crown ratio	Foliage retention (yrs)	BH age (years)	Site Index (m @ 50 yrs)	Fol. N (%)	Fol. P (%)	Fol. Ca (%)	DF density (trees/ha)	DF basal area (m²/ha)	рН
CTC	27.9	23.1	0.57	3.38	23	41.8	1.3	0.145	0.54	977	35.4	5.34
GDE	39.1	28.1	0.51	2.77	27.1	46	1.46	0.115	0.205	512	43.4	4.86
GDH	29.2	21.1	0.64	1.62	19.8	41.3	1.43	0.115	0.185	724	32.6	4.74
GPH	23.4	17.2	0.64	3.64	15	47.5	1.26	0.15	0.53	921	24.9	5.97
HAGR	27.2	16.6	0.75	2.22	15.9	46.5	1.51	0.14	0.31	683	27.9	5
НАК	32	23.9	0.6	2.36	21.8	46.9	1.31	0.135	0.295	630	37.3	5.05
LRT	36.8	22.6	0.65	3.35	21.1	43.1	1.24	0.175	0.54	435	36.3	5.84
MNN	27.4	17.8	0.7	2.22	13.3	54.1	1.42	0.11	0.205	782	31.4	4.93
MNS	29.5	20.9	0.61	2.66	20	46.6	1.43	0.11	0.3	768	33.9	5.23
ODF	25.9	16.9	0.69	2.34	14.7	48.9	1.56	0.135	0.29	877	30.2	4.79
OSU	25.9	18	0.67	3.31	14.8	46.9	1.27	0.179	0.608	819	32.6	6.46
РВ	26.4	21.5	0.47	3.41	20.4	45.1	1.3	0.175	0.455	1186	36.5	5.8
STR	29.2	20.2	0.65	2.71	17.7	48.7	1.27	0.175	0.49	754	35.8	5.3
WE	19.6	12.9	0.71	2.13	13	44.1	1.44	0.19	0.52	1544	31.4	6
WF	35.1	20.2	0.79	3.65	20	42.7	1.23	0.17	0.415	476	39.7	4.95
ww	29.5	23	0.59	2.28	28.4	36.2	1.19	0.21	0.35	708	35.4	5.58
Mean												
	29	20.3	0.64	2.75	19.1	45.4	1.35	0.15	0.39	799.8	34	5.37

Study design

- Individual tree plots (0.01 ha)
- Centered on subjectively chosen dom/codom tree
- 5 or 7 treatments per site, randomly assigned
- 10 plots per treatment
- 50 or 70 plots per site

Measurements and Sampling

Subject Tree

- Dbh
- Height, height to lowest live branch
- Sapwood width
- Diameter at 5.5 m
- Foliage (4-yr old lateral from 5 yr old whorl branch)
- Soil (two 10 cm cores)

Plot

All plot trees measured for dbh (plot-le

• Treatment

Foliage, soil composite for chemical and

Measurements and Sampling

• Subject Tree

- Dbh
- Height, height to lowest live branch
- Sapwood width
- Diameter at 5.5 m
- Foliage (4-yr old lateral from 5 yr old whorl branch)
- Soil (two 10 cm cores)

Plot

All plot trees measured for dbh (plot-level basal area)

• Treatment

- Foliage, soil composite for chemical analysis

Treatments

Treatment	Form	Amount	Reason for inclusion			
Control			Statistical reference for treatments			
Ν	Urea	225 kg N / ha	Standard approach			
Lime	CaCO ₃	1000 kg Ca / ha	Elevates pH, reduces AI, adds Ca: compare to Ca-only treatment			
Ca	CaCl ₂	100 kg Ca / ha	Low soil and foliar Ca is common at our sites, attributable to high soil N			
Ρ	NaH ₂ PO ₄	560 kg P / ha	Can limit growth in highly weathered soils, some sites have P-fixing soils			
Kinsey	Blend	Site specific	Scientific and industry interest in overall nutritional limits to productivity			
Fenn	Blend	Site specific	Scientific and industry interest in overall nutritional limits to productivity			

Stem volume growth response, regional

- Response variable: stem volume increment
- Response tested with ANCOVA, regression
- ANCOVA: analyzed as a randomized complete block
- Regression: Tested for correlation between treatment response and site-specific factors (soil and foliar chemistry)

Stem volume response, ANCOVA

- Significant covariates : initial volume, plot-level basal area
- Marginally significant response:
 - N (p=0.069)
 - Lime (p=0.051)
 - P (p=0.10)

Growth response, site specific

	Ν	Lime	CaCl ₂	Phos	Kinsey	Fenn
СТС	35.0	15.8	15.0	18.3	16.1	1.4
GDE	9.1	2.6	12.3	-7.1	3.1	14.4
GDH	-11.7	2.4	0.5	-12.0	-3.6	-9.4
GPH	6.4	3.5	7.9	7.5		
HAGR	-3.2	1.8	-12.0	1.2	-2.0	-2.7
HAK	-2.6	-4.3	3.6	-4.0	-3.1	1.6
LRT	-0.1	-0.9	-5.9	-1.7		
MNN	-7.4	9.6	7.3	-0.1	-11.1	2.4
MNS	6.7	12.6	-9.7	17.5	5.9	9.0
ODF	0.8	-0.3	-3.1	12.0	8.4	10.0
OSU	0.5	6.8	7.4	6.4	5.8	8.1
PB	-6.6	-0.1	3.0	4.2	-3.1	1.8
STR	1.3	-8.6	-6.6	5.2	-8.0	-5.4
WE	10.3	13.3	20.8	14.8		
WF	4.0	-4.7	-8.0	-4.5	-2.0	6.1
WW	26.3	9.4	8.2	-4.2		

3-yr Volume Growth, N treatment

Response dependent on soil Ca/N

 $ln(VOLGR) = 1.36321 + 0.4957*ln(D^{2}H) + 1.2724*ln(SI) + -0.191*(pH) + 0.4866*ln(fCa) + -0.0844*ln(sCaN) + 0.1383*(I_{U}) + 0.04652*I_{U}*ln(sCaN)$

where	VOLGR=		Predicted periodic annual volume increment for individual tree (dm ³ yr ⁻¹)
	D^2H	=	Initial volume index
	SI	=	Site index
	рН	=	Initial soil pH
	fCa	=	Initial foliar calcium concentration (%)
	sCaN	=	Initial ratio of soil calcium % to soil nitrogen %
	۱ _U	=	(1 if urea fertilized; 0 otherwise)

3-yr Volume Growth, N treatment

- Line represents multiplicative response to N fertilization
- Points represent sitelevel response vs. Ca/N combinations within dataset
- Response dependent on soil Ca/N

3-yr Volume Growth, Lime treatment

- Response dependent on initial soil pH, foliar Ca conc.
- VOLGR = $exp(2.674)*D^2H^{0.474}*SI^{1.06}*fCa^{0.597}*sCaN^{-0.0822}*exp((-0.2609*pH)+(I_C*(-1.1914+-0.37*ln(fCa)+0.2969*pH)))$

where	VOLGR=		Predicted periodic annual volume increment for individual tree (dm ³ yr ⁻¹)
	D^2H	=	Initial volume index
	SI	=	Site index
	рН	=	Initial soil pH
	fCa	=	Initial foliar calcium concentration (%)
	sCaN	=	Initial ratio of soil calcium % to soil nitrogen %
	I _C	=	(1 if lime fertilized; 0 otherwise)

3-yr Volume Growth, Lime treatment

- Lines represent multiplicative response to lime fertilization
- Points represent combinations of pH, fol_Ca present within dataset
- Response dependent on initial soil pH, foliar Ca conc.

Initial foliar Calcium concentration (%)

3-yr Volume Growth, CaCl₂ treatment

- Response dependent on initial soil pH, foliar Ca conc.
- VOLGR = $exp(3.2763)*D^2H^{0.8535}*SI^{1.06}*fCa^{0.714*}sCaN^{-0.135}*exp((-0.2211*pH)+(I_C*(-1.7936+-0.3312*ln(fCa)+0.22829*pH)))$

where	VOLGR=		Predicted periodic annual volume increment for individual tree (dm ³ yr ⁻¹)
	D ² H	=	Initial volume index
	SI	=	Site index
	рН	=	Initial soil pH
	fCa	=	Initial foliar calcium concentration (%)
	sCaN	=	Initial ratio of soil calcium % to soil nitrogen %
	I _C	=	(1 if CaCl ₂ fertilized; 0 otherwise)

3-yr Volume Growth, CaCl₂ treatment

- Lines represent multiplicative response to CaCl₂ fertilization
- Points represent combinations of pH, fol_Ca present within dataset
- Response dependent on initial soil pH, foliar Ca conc.

3-yr Volume Growth, Phosphorus treatment

• Response dependent on initial soil pH, foliar P conc.

VOLGR = $0.0444(D^2H)^{0.4375}$ *SI^{1.9562} *exp[(10.9373+-1.3531pH)*fP]* exp[I_P*(-5.2574+1.0577*pH + 29.0023*fP+-5.8157*pH*fP)]

where	VOLGR=		Predicted periodic annual volume increment for individual tree (dm ³ yr ⁻¹)
	D ² H	=	Initial volume index
	SI	=	Site index
	рН	=	initial soil pH
	fP	=	initial foliar Phosphorus
	Ip	=	1 if P fertilized; 0 otherwise

3-yr Volume Growth, Phosphorus treatment

- Lines represent multiplicative response to P fertilization
- Points represent combinations of pH, fol_P present within dataset
- Equation implies no response to P below pH=5, above P=0.19%

Conclusions

- There is evidence of a marginal regional response to N, lime, and P, but there is lots of site to site variation
- Response to N is positively correlated with soil Ca/N ratio. Given relation between this ratio and geography, SNC stands don't appear a good bet for N fertilization
- Calcium may be an effective fertilizer at certain combinations of soil pH and foliar Ca. Short term response can be more efficiently obtained using CaCl₂
- Phosphorus may be an effective fertilizer at certain combinations of soil pH and foliar P. Phosphorus does not appear to be effective at soil pH<5 or foliar P>0.19%
- Because these results are based on individual trees, stand level response can't be inferred

