Soil multivariate analysis for forest plantations fertilization design

Jesús Fernández-Moya, A Alvarado, M Morales, A San Miguel-Ayanz, M Marchamalo-Sacristán

Technical University of Madrid and University of Costa Rica jesusfmoya@gmail.com

CONTENTS

IntroductionNeeds of forest fertilizationIntroductionPrecision farming and forestryObjective

Material and methodsStudy areaMaterial and methodsTeak plantations in Central AmericaStatistical multivariate analysis

Results and discussion

Conclusions

Other related works and research lines

INTRODUCTION

Soil management and forest nutrition

Sustainable timber production (environmental aspects)? Sustain high productivity (second rotation)

Fertilization

Central America

Common in intensively managed plantations Low dosage (only 100-150 g at establishment) Correct formula? Usually N-P-K

Needs for other nutrients (Mg and micronutrients: B and Zn) Much lower than nutrient extraction by timber harvest

INTRODUCTION

INTRODUCTION

Objective

Analyze the capability of multivariate analysis to delineate soil fertility classes

Show the usefulness of this methodology aiming a more detailed nutritional management of forest plantations

MATERIAL AND METHODS

85° W

Jan

Feb

Mar

Apr

Mav

Jun

Jul

Aug

Sep

Oct

Nov

Dic

Soil

General: Fertile, reddish and clayey

Carrillo: Typic Rhodustalfs mixed with Typic Dystrustepts

→ Palo Arco: Typic Haploustalfs mixed with Vertic Haploustepts

Panamerican Woods soil database

195 topsoil (0-20 cm) fertility samples across all the different stands pH, exchangeable Ca, Mg, K, ECEC, P, Fe, Cu, Zn, Mn and acidity (Olsen-KCl method)

MATERIAL AND METHODS

Teak plantations in Central America

150,000 ha in Central and South America		55.000 ha in Panama (9th country in the world)	
		31.500 ha in Costa Rica	
High growth rates and short rotation perio		Search for high soil fertility sites	
		Big investments (big companies)	
		Intensive management	
		High rates of nutrient extraction by timber harvest	

Region	MAI (m ³ /ha/yr)		Rotation period (yrs)	
	Min	Max	Min	Max
Africa (7)	3	21	4	60
Asia (5)	2	14	20	80
Caribbean (3)	3	12	20	65
Centr. America (5)	5	30	6	30
Oceania (2)	5	12	20	30
South America (4)	10	27	20	30
World (26)	2	30	4	80

MATERIAL AND METHODS

Data transformation

Variables centered with the mean and standardized with the standard deviation

Type of	Origin of the	Number of	Nomo	Number of	Reference for
analysis	data	samples	samples		centering
РСА	Comoral	105	G-PCA		average
	General	195		_	critical value
	General	195	G-NMDS		average
					critical value
NIMDE	Carrillo	75	C-NMDS		average
NMDS		15			critical value
		120	PA-NMDS		average
	Palo Arco	120			critical value
			G-2	2	average
					critical value
			G-3	3	average
Cluster -					critical value
	General	195	G-4 G-5	4 5	average
					critical value
					average
			G-6	6	average
					critical value
	Carrillo 75		C-2	2	average
		75			critical value
		15	C-3	3	average
					critical value
	Palo Arco 120		PA-2	2	average
		120			critical value
			PA-3	3	average

	Group	Average CV (%)	Δ average CV (%)	Number of soil samples in the group
Null hypothesis (no-grouping)		66.8		195
Grouping by plantation	Carrillo	66.5	-0.4	75
Glouping by plaination	Palo Arco	58.3	-12.7	120
G-2	Group 1	60.2	-10.5	158
	Group 2	56.2	-9.7	37
	Group 1	55.8	-14.1	157
G-3	Group 2	56.2	-9.7	37
	Group 3			1
	Group 1	60.2	-10.5	157
C A	Group 2	52.3	-17.4	35
G-4	Group 3	51.8	-22.5*	2
	Group 4			1
	Group 1	60.2	-10.5	157
G-5	Group 2	40.2	-40.9**	19
	Group 3	38.2	-36.6**	16
	Group 4	51.8	-22.5*	2
	Group 5			1
	Group 1	35.7	-45.5**	5
	Group 2	40.2	-40.9**	19
G-6	Group 3	55.0	-17.7	152
	Group 4	38.2	-36.6**	16
	Group 5	51.8	-22.5*	2
	Group 6			1
C-2	Group 1	-2.8	-2.7	74
	Group 2			1
C-3	Group 1	-19.2	-16.3	42
	Group 2	-17.9	-21.4*	32
	Group 3			1
PA-2	Group 1	-14.0	-26.8*	110
	Group 2	-13.3	-29.0*	10
	Group 1			1
PA-3	Group 2	-17.4	-31.4*	109
	Group 3	-13.3	-29.0*	10

GENERAL PCA

4

2

NMDS2

Ŷ

4

φ.

PALO ARCO

.2

2

0

2

NMDS1

8 ____

3

(h)

(2)

8 1

Multivariate analysis provides forest nutrition and soil fertility managers with techniques to classify soil groups by integrating a large number of variables, such as micronutrient concentration values, from across a large number of soil samples.

By designing forest fertilization plans for groups of stands, where each group comprises stands with homogeneous soil fertility properties, fertilizer deployment can therefore be implemented with much greater efficiency and productivity

Other related works and research lines

Soil multivariate analysis for forest plantations fertilization design Nutrient concentration age dynamics of teak plantations in Central America Nutrient accumulation and export in teak plantations in Central America Seasonal variation of nutrient concentration in timber of teak plantations: implications sustainable forest management Fertilization of teak planted forests along a 11 years chronosequence in Costa Rica Response of 20 year old teak plantations to fertilization Nutrition of teak plantations in Panama: critical reference values for foliar nutrient concentrations Use of machine learning techniques to establish a methodology for land evaluation and site selection for teak plantations in Central America

Effects of teak plantations over soil hydrological properties

- Erosion
- Soil hydraulics (Ksat, porosity, infiltration)

FOREST NUTRITION IN PLANTATIONS WITH OTHER SPECIES

Nutrient concentration, accumulation and export in *Termianlia amazonia* (J.F. Gmel.) Exell] plantations

Nutrient concentration, accumulation and export plantations of other native species

USE OF NEW TECHNOLGIES TO EVALUATE AND MANAGE SOIL RESOURCES IN FOREST PLANTATIONS

At the moment: multivariate statistics and tree-regression (machine learning)

Use of remote sensing to evaluate forest nutrition

Use of geostatistics and digital soil mapping techniques for land evaluation and site selection for forest plantations

Thank you very much

jesusfmoya@gmail.com