We are unable to supply this entire article because the publisher requires payment of a copyright fee. You may be able to obtain a copy from your local library, or from various commercial document delivery services.

From Forest Nursery Notes, Summer 2013

Twelve-year responses of planted and naturally regenerating conifers to variable-retention harvest in the Pacific Northwest, USA

Lauren S. Urgenson, Charles B. Halpern, and Paul D. Anderson

Abstract: We studied patterns of conifer regeneration over 12 years as part of a regional-scale experiment in variable-retention harvest in the Pacific Northwest, the DEMO Study. We compared survival and height growth of planted conifers and density and seral composition of natural regeneration among treatments with differing retention levels (15% versus 40%) and patterns (dispersed versus aggregated) replicated across a range of latitudes and forest zones. We also assessed plot-scale relationships of natural regeneration with overstory density and basal area, competing vegetation, and slash accumulations. Early (1- to 2-year) survival of planted seedlings was greater in dispersed treatments (Pinus monticola Douglas ex D. Don, Abies spp.) or unaffected by retention level or pattern (Pseudotsuga menziesii (Mirb.) Franco). Later (5- to 12-year) survival did not differ (all species), but growth was distinctly reduced in dispersed treatments and (or) at higher levels of retention. Density of natural regeneration was 1.5–2.5 times greater in dispersed treatments than in the cleared areas of aggregated treatments. Low-level dispersed retention promoted Pseudotsuga, the early-seral dominant, presumably by enhancing seed rain within a relatively high-light environment. Dispersed retention favored late-seral conifers. The ability to manipulate retention pattern and level to influence regeneration density and composition provides managers with flexibility in developing structurally complex and compositionally diverse forests.

Introduction

Variable-retention harvest has become integral to ecologically sustainable forest management worldwide (Lindenmayer et al. 2012). It emphasizes retention of forest structures through harvest to mimic the processes and outcomes of natural disturbance and succession (Franklin et al. 1997). An implicit goal of variable retention is to balance the ecological and economic values of managed forests (Lindenmayer et al. 2012). Although variable retention can be implemented in diverse ways (Gustafsson et al. 2012), two elements of forest structure, the level (amount) and spatial distribution of retained trees, are hypothesized to play important roles in post-harvest regeneration (Franklin et al. 1997). Studies that isolate the individual and joint effects of retention level and pattern are rare, however (Rosenvald and Lõhmus 2008).

Partial retention of the overstory is hypothesized to have direct and indirect effects on the survival, growth, density, and composition of the regenerating cohort. Retained trees can provide direct benefits by ameliorating understory microclimate (Vanha-Majamaa and Jalonen 2001), increasing seed rain (Beach and Halpern 2001), or facilitating access to mycorrhizae (Luoma et al. 2006). Conversely, they can inhibit regeneration by reducing light (Mitchell 2001), soil moisture, or nutrients (Boyden et al. 2012). Moreover, these influences can change over time, enhancing seed availability early in succession but reducing survival in the longer term (Temesgen et al. 2006). Pattern of retention can also influence the composition of the regenerating cohort. Dispersed retention is thought to favor shade-tolerant species and the harvested matrix among forest aggregates, shade-intolerant species (Franklin et al. 1997).

Partial retention can also shape patterns of regeneration indirectly through effects on post-harvest ground conditions and competing vegetation. For example, variation in cover and depth of logging slash can affect survival of advanced regeneration or post-harvest germination and establishment (Halpern and McKenzie 2001). Retention level and pattern can also influence the growth of herbs and shrubs that compete with regenerating trees (Halpern et al. 2012). Where physical or biotic conditions create barriers to...